Thursday, 21 September 2017

4 Perioden Gleit Durchschnitt Prognose


Gleitende durchschnittliche Vorhersage Einführung. Wie Sie vielleicht vermuten, sehen wir uns einige der primitivsten Ansätze zur Prognose an. Aber hoffentlich sind dies zumindest eine lohnende Einführung in einige der Computing-Fragen im Zusammenhang mit der Umsetzung von Prognosen in Tabellenkalkulationen. In diesem Sinne werden wir fortfahren, indem wir am Anfang beginnen und mit Moving Average Prognosen arbeiten. Gleitende durchschnittliche Prognosen. Jeder ist mit gleitenden durchschnittlichen Prognosen vertraut, unabhängig davon, ob sie glauben, dass sie sind. Alle College-Studenten machen sie die ganze Zeit. Denken Sie an Ihre Testergebnisse in einem Kurs, wo Sie vier Tests während des Semesters haben werden. Nehmen wir an, Sie haben eine 85 bei Ihrem ersten Test. Was würdest du für deinen zweiten Test-Score vorhersagen Was denkst du, dein Lehrer würde für deinen nächsten Test-Score voraussagen Was denkst du, deine Freunde können für deinen nächsten Test-Score voraussagen Was denkst du, deine Eltern können für deinen nächsten Test-Score voraussagen All das Blabbing, das du mit deinen Freunden und Eltern machen kannst, sie und deinem Lehrer sind sehr wahrscheinlich zu erwarten, dass du etwas im Bereich der 85 bekommst, die du gerade bekommen hast. Nun, jetzt können wir davon ausgehen, dass trotz Ihrer Selbst-Förderung zu Ihren Freunden, Sie über-schätzen Sie sich selbst und Figur können Sie weniger für den zweiten Test zu studieren und so erhalten Sie eine 73. Nun, was sind alle betroffenen und unbekümmert zu gehen Erwarten Sie auf Ihrem dritten Test zu bekommen Es gibt zwei sehr wahrscheinlich Ansätze für sie eine Schätzung zu entwickeln, unabhängig davon, ob sie es mit Ihnen teilen wird. Sie können sich selbst sagen, "dieser Kerl ist immer bläst Rauch über seine smarts. Er wird noch 73, wenn er glücklich ist. Vielleicht werden die Eltern versuchen, mehr unterstützend zu sein und zu sagen, quotWell, so weit hast du eine 85 und eine 73 bekommen, also vielleicht solltest du auf eine (85 73) 2 79 kommen. Ich weiß nicht, vielleicht, wenn du weniger feiern musst Und werent wedelte den Wiesel überall auf den Platz und wenn du anfing, viel mehr zu studieren, könntest du eine höhere Punktzahl bekommen. Diese beiden Schätzungen belegen tatsächlich durchschnittliche Prognosen. Die erste nutzt nur Ihre aktuellste Punktzahl, um Ihre zukünftige Leistung zu prognostizieren. Dies wird als eine gleitende durchschnittliche Prognose mit einer Periode von Daten bezeichnet. Die zweite ist auch eine gleitende durchschnittliche Prognose, aber mit zwei Perioden von Daten. Nehmen wir an, dass all diese Leute, die auf deinem großen Verstand zerschlagen sind, dich irgendwie verärgert haben und du entscheidest, den dritten Test aus deinen eigenen Gründen gut zu machen und eine höhere Punktzahl vor deinem Quoten zu setzen. Sie nehmen den Test und Ihre Partitur ist eigentlich ein 89 Jeder, auch Sie selbst, ist beeindruckt. So, jetzt haben Sie die endgültige Prüfung des Semesters kommen und wie üblich fühlen Sie sich die Notwendigkeit, goad jeder in die Herstellung ihrer Vorhersagen darüber, wie youll auf den letzten Test zu tun. Nun, hoffentlich sehen Sie das Muster. Nun, hoffentlich kannst du das Muster sehen. Was glaubst du, ist die genaueste Pfeife während wir arbeiten. Jetzt kehren wir zu unserer neuen Reinigungsfirma zurück, die von deiner entfremdeten Halbschwester namens Whistle während wir arbeiten. Sie haben einige vergangene Verkaufsdaten, die durch den folgenden Abschnitt aus einer Kalkulationstabelle dargestellt werden. Zuerst stellen wir die Daten für eine dreistellige gleitende durchschnittliche Prognose vor. Der Eintrag für Zelle C6 sollte jetzt sein. Du kannst diese Zellformel auf die anderen Zellen C7 bis C11 kopieren. Beachten Sie, wie sich der Durchschnitt über die aktuellsten historischen Daten bewegt, aber genau die drei letzten Perioden verwendet, die für jede Vorhersage verfügbar sind. Sie sollten auch bemerken, dass wir nicht wirklich brauchen, um die Vorhersagen für die vergangenen Perioden zu machen, um unsere jüngsten Vorhersage zu entwickeln. Dies unterscheidet sich definitiv von dem exponentiellen Glättungsmodell. Ive enthalten die quotpast Vorhersagen, weil wir sie in der nächsten Webseite verwenden, um die Vorhersagegültigkeit zu messen. Jetzt möchte ich die analogen Ergebnisse für eine zweistufige gleitende durchschnittliche Prognose vorstellen. Der Eintrag für Zelle C5 sollte jetzt sein. Du kannst diese Zellformel in die anderen Zellen C6 bis C11 kopieren. Beachten Sie, wie jetzt nur die beiden letzten Stücke der historischen Daten für jede Vorhersage verwendet werden. Wieder habe ich die quotpast-Vorhersagen für illustrative Zwecke und für die spätere Verwendung in der Prognose-Validierung enthalten. Einige andere Dinge, die wichtig sind, um zu bemerken. Für eine m-Periode gleitende durchschnittliche Prognose werden nur die m aktuellsten Datenwerte verwendet, um die Vorhersage zu machen. Nichts anderes ist nötig Für eine m-Periode gleitende durchschnittliche Prognose, wenn Sie quotpast Vorhersagen quot, bemerken, dass die erste Vorhersage in Periode m 1 auftritt. Beide Themen werden sehr wichtig sein, wenn wir unseren Code entwickeln. Entwicklung der beweglichen Mittelfunktion. Jetzt müssen wir den Code für die gleitende Mittelprognose entwickeln, die flexibler genutzt werden kann. Der Code folgt. Beachten Sie, dass die Eingaben für die Anzahl der Perioden gelten, die Sie in der Prognose und dem Array von historischen Werten verwenden möchten. Sie können es in der beliebigen Arbeitsmappe speichern. Funktion MovingAverage (Historical, NumberOfPeriods) Als Single Declaring und Initialisierung von Variablen Dim Item als Variant Dim Zähler als Integer Dim Akkumulation als Single Dim HistoricalSize als Integer Initialisierung von Variablen Counter 1 Akkumulation 0 Bestimmen der Größe von Historical Array HistoricalSize Historical. Count For Counter 1 To NumberOfPeriods Akkumulation der entsprechenden Anzahl der aktuellsten bisher beobachteten Werte Akkumulation Akkumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Der Code wird in der Klasse erklärt. Sie wollen die Funktion auf der Kalkulationstabelle positionieren, so dass das Ergebnis der Berechnung erscheint, wo es sich ansieht. Wenn man einen laufenden gleitenden Durchschnitt berechnet, ist der Mittelwert in der mittleren Zeitspanne sinnvoll. Im vorherigen Beispiel haben wir den Durchschnitt berechnet Die ersten 3 Zeiträume und platziert sie neben Periode 3. Wir hätten den Durchschnitt in der Mitte des Zeitintervalls von drei Perioden platzieren können, also neben Periode 2. Das funktioniert gut mit ungeraden Zeiträumen, aber nicht so gut Für gleichzeitige zeiträume Also, wo würden wir den ersten gleitenden Durchschnitt platzieren, wenn M 4 Technisch, würde der Moving Average bei t 2,5, 3,5 fallen. Um dieses Problem zu vermeiden, glätten wir die MAs mit M 2. Damit glätten wir die geglätteten Werte. Wenn wir eine gerade Anzahl von Begriffen beurteilen, müssen wir die geglätteten Werte glätten. Die folgende Tabelle zeigt die Ergebnisse mit M 4.3 Verständnis der Prognoseebenen und - methoden Generieren sowohl detaillierte (Einzelposten) Prognosen und Zusammenfassung (Produktlinie) Prognosen, die Produktnachfrage Muster widerspiegeln. Das System analysiert die bisherigen Verkäufe, um die Prognosen mit 12 Prognosemethoden zu berechnen. Die Prognosen beinhalten Detailinformationen auf der Positionsebene und übergeordnete Informationen über eine Zweigniederlassung oder das Unternehmen als Ganzes. 3.1 Prognoseleistungsbewertungskriterien Abhängig von der Auswahl der Verarbeitungsoptionen und von Trends und Mustern in den Verkaufsdaten sind einige Prognosemethoden besser als andere für einen gegebenen historischen Datensatz. Eine für ein Produkt geeignete Vorhersagemethode ist möglicherweise nicht für ein anderes Produkt geeignet. Sie könnten feststellen, dass eine Prognosemethode, die auf einer Stufe eines Produktlebenszyklus gute Ergebnisse liefert, während des gesamten Lebenszyklus angemessen bleibt. Sie können zwischen zwei Methoden wählen, um die aktuelle Leistung der Prognosemethoden zu bewerten: Prozent der Genauigkeit (POA). Mittlere absolute Abweichung (MAD). Beide dieser Bewertungsbewertungsmethoden erfordern historische Verkaufsdaten für einen Zeitraum, den Sie angeben. Dieser Zeitraum wird als Haltezeit oder Periode der besten Passung bezeichnet. Die Daten in diesem Zeitraum dienen als Grundlage für die Empfehlung, welche Prognosemethode bei der nächsten Prognoseprojektion verwendet wird. Diese Empfehlung ist für jedes Produkt spezifisch und kann von einer Prognoseerzeugung zum nächsten wechseln. 3.1.1 Best Fit Das System empfiehlt die Best-Fit-Prognose, indem es die ausgewählten Prognosemethoden auf den vergangenen Kundenauftragsverlauf anwendet und die Prognosesimulation mit der aktuellen Historie vergleicht. Wenn Sie eine Best-Fit-Prognose generieren, vergleicht das System die tatsächlichen Kundenauftragsgeschichten mit Prognosen für einen bestimmten Zeitraum und berechnet, wie genau jede einzelne Prognosemethode den Umsatz voraussagte. Dann empfiehlt das System die genaueste Prognose als die beste Passform. Diese Grafik zeigt die besten Anpassungsprognosen: Abbildung 3-1 Best-Fit-Prognose Das System verwendet diese Abfolge von Schritten, um die beste Passung zu bestimmen: Verwenden Sie jede spezifizierte Methode, um eine Prognose für den Holdout-Zeitraum zu simulieren. Vergleichen Sie die tatsächlichen Verkäufe an die simulierten Prognosen für den Haltezeitraum. Berechnen Sie die POA oder die MAD, um festzustellen, welche Prognosemethode am ehesten mit dem bisherigen Verkauf übereinstimmt. Das System verwendet entweder POA oder MAD, basierend auf den von Ihnen ausgewählten Verarbeitungsoptionen. Empfehlen Sie eine Best-Fit-Prognose von der POA, die am nächsten zu 100 Prozent (über oder unter) oder die MAD, die am nächsten an Null ist. 3.2 Prognosemethoden JD Edwards EnterpriseOne Forecast Management verwendet 12 Methoden zur quantitativen Prognose und zeigt an, welche Methode für die Prognosesituation am besten geeignet ist. Dieser Abschnitt behandelt: Methode 1: Prozent über letztes Jahr. Methode 2: Berechneter Prozentsatz über letztes Jahr. Methode 3: Letztes Jahr zu diesem Jahr. Methode 4: Durchschnittlich bewegen. Methode 5: Lineare Approximation. Methode 6: Least Squares Regression. Methode 7: Zweite Grad Approximation. Methode 8: Flexible Methode. Methode 9: Gewichteter bewegter Durchschnitt. Methode 10: Lineare Glättung. Methode 11: Exponentielle Glättung. Methode 12: Exponentielle Glättung mit Trend und Saisonalität. Geben Sie die Methode an, die Sie in den Verarbeitungsoptionen für das Programm für die Prognoseerzeugung verwenden möchten (R34650). Die meisten dieser Methoden bieten eine begrenzte Kontrolle. Zum Beispiel kann das Gewicht der letzten historischen Daten oder der Datumsbereich der historischen Daten, die in den Berechnungen verwendet werden, von Ihnen angegeben werden. Die Beispiele in der Anleitung geben die Berechnungsmethode für jede der verfügbaren Prognosemethoden an, wobei ein identischer Satz historischer Daten vorliegt. Die Methodenbeispiele im Leitfaden verwenden Teil oder alle diese Datensätze, die historische Daten aus den letzten zwei Jahren sind. Die Prognoseprojektion geht ins nächste Jahr. Diese Handelsgeschichte Daten sind stabil mit kleinen saisonalen Zunahmen im Juli und Dezember. Dieses Muster ist charakteristisch für ein reifes Produkt, das sich der Obsoleszenz nähern könnte. 3.2.1 Methode 1: Prozent über letztes Jahr Diese Methode verwendet die Percent Over Last Year Formel, um jeden Prognosezeitraum um den angegebenen Prozentsatz zu erhöhen oder zu verringern. Um die Nachfrage zu prognostizieren, erfordert diese Methode die Anzahl der Perioden für die beste Passform plus ein Jahr der Verkaufsgeschichte. Diese Methode ist nützlich, um die Nachfrage nach saisonalen Gegenständen mit Wachstum oder Rückgang zu prognostizieren. 3.2.1.1 Beispiel: Methode 1: Prozent über letztes Jahr Die Percent Over Last Year Formel vervielfacht die Verkaufsdaten des Vorjahres um einen Faktor, den Sie angeben und dann Projekte, die sich im nächsten Jahr ergeben. Diese Methode könnte bei der Budgetierung nützlich sein, um den Einfluss einer bestimmten Wachstumsrate zu simulieren oder wenn die Verkaufsgeschichte eine signifikante saisonale Komponente aufweist. Prognosevorgaben: Multiplikationsfaktor Geben Sie z. B. 110 in der Verarbeitungsoption an, um die Vorjahresgeschäftsdaten um 10 Prozent zu erhöhen. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung (Perioden der besten Anpassung) erforderlich sind, die Sie angeben. Diese Tabelle wird in der Prognoseberechnung verwendet: Februar-Prognose entspricht 117 mal 1.1 128.7 gerundet auf 129. März-Prognose entspricht 115 mal 1.1 126.5 gerundet auf 127. 3.2.2 Methode 2: Berechneter Prozentsatz über letztes Jahr Diese Methode verwendet den berechneten Percent Over Last-Jahr-Formel, um die vergangenen Verkäufe von bestimmten Perioden zu Verkäufen aus den gleichen Perioden des Vorjahres zu vergleichen. Das System bestimmt eine prozentuale Erhöhung oder Abnahme und multipliziert dann jede Periode mit dem Prozentsatz, um die Prognose zu ermitteln. Um die Nachfrage zu prognostizieren, erfordert diese Methode die Anzahl der Perioden des Kundenauftragsverlaufs plus ein Jahr der Verkaufsgeschichte. Diese Methode ist nützlich, um kurzfristige Nachfrage nach saisonalen Gegenständen mit Wachstum oder Rückgang zu prognostizieren. 3.2.2.1 Beispiel: Methode 2: Berechneter Prozentsatz über letztes Jahr Die berechnete Periode über dem letzten Jahr vervielfacht die Umsatzdaten des Vorjahres um einen Faktor, der vom System berechnet wird, und dann projiziert sie für das nächste Jahr. Diese Methode könnte nützlich sein, um den Einfluss der Verlängerung der jüngsten Wachstumsrate für ein Produkt in das nächste Jahr zu projizieren, während ein saisonales Muster, das in der Verkaufsgeschichte vorhanden ist, bewahrt wird. Prognose-Spezifikationen: Umfang der Verkaufsgeschichte bei der Berechnung der Wachstumsrate zu verwenden. Geben Sie z. B. n gleich 4 in der Verarbeitungsoption an, um die Verkaufsgeschichte für die letzten vier Perioden zu den gleichen vier Perioden des Vorjahres zu vergleichen. Verwenden Sie das berechnete Verhältnis, um die Projektion für das nächste Jahr zu machen. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung (Perioden der besten Passung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet, vorausgesetzt, n 4: Februar-Prognose entspricht 117 mal 0,9766 114,26 gerundet auf 114. März-Prognose entspricht 115 mal 0,9766 112,31 gerundet auf 112. 3.2.3 Methode 3: Letztes Jahr zu diesem Jahr Diese Methode verwendet Im vergangenen Jahr Umsatz für die nächsten Jahre prognostiziert. Um die Nachfrage zu prognostizieren, erfordert diese Methode die Anzahl der Perioden, die am besten passen, plus ein Jahr des Verkaufsauftragsverlaufs. Diese Methode ist sinnvoll, um die Nachfrage nach reifen Produkten mit Niveau Nachfrage oder saisonale Nachfrage ohne Trend zu prognostizieren. 3.2.3.1 Beispiel: Methode 3: Letztes Jahr zu diesem Jahr Das letzte Jahr zu diesem Jahr verwandelt die Verkaufsdaten vom Vorjahr auf das nächste Jahr. Diese Methode könnte bei der Budgetierung nützlich sein, um den Umsatz auf dem aktuellen Niveau zu simulieren. Das Produkt ist reif und hat keinen Trend auf lange Sicht, aber es könnte ein erhebliches saisonales Nachfragemuster bestehen. Vorhersage Spezifikationen: Keine. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung (Perioden der besten Passung) erforderlich sind. Diese Tabelle ist Geschichte in der Prognoseberechnung verwendet: Januar Prognose entspricht Januar des vergangenen Jahres mit einem Prognosewert von 128. Februar Prognose entspricht Februar des vergangenen Jahres mit einem Prognosewert von 117. März Prognose entspricht März des letzten Jahres mit einem Prognosewert von 115. 3.2.4 Methode 4: Moving Average Diese Methode verwendet die Moving Average-Formel, um die angegebene Anzahl von Perioden zu berechnen, um den nächsten Zeitraum zu projizieren. Sie sollten es oft (monatlich oder mindestens vierteljährlich) neu berechnen, um dem sich ändernden Nachfrageniveau zu entsprechen. Um die Nachfrage zu prognostizieren, erfordert diese Methode die Anzahl der Perioden, die am besten geeignet sind, sowie die Anzahl der Perioden des Kundenauftragsverlaufs. Diese Methode ist sinnvoll, um die Nachfrage nach ausgereiften Produkten ohne Trend zu prognostizieren. 3.2.4.1 Beispiel: Methode 4: Moving Average Moving Average (MA) ist eine beliebte Methode zur Mittelung der Ergebnisse der letzten Verkaufsgeschichte, um kurzfristig eine Projektion zu bestimmen. Die MA-Prognosemethode bleibt hinter den Trends zurück. Prognose-Bias und systematische Fehler treten auf, wenn die Produktverkäufe Geschichte starke Tendenz oder saisonale Muster zeigt. Diese Methode arbeitet besser für Kurzstreckenprognosen von reifen Produkten als für Produkte, die sich in den Wachstums - oder Obsoleszenzstadien des Lebenszyklus befinden. Prognosevorgaben: n entspricht der Anzahl der Perioden der Verkaufshistorie, die bei der Prognoseberechnung verwendet werden soll. Geben Sie z. B. n 4 in der Verarbeitungsoption an, um die letzten vier Perioden als Grundlage für die Projektion in den nächsten Zeitraum zu verwenden. Ein großer Wert für n (z. B. 12) erfordert mehr Verkaufsgeschichte. Es führt zu einer stabilen Prognose, ist aber langsam zu erkennen Verschiebungen in der Ebene des Umsatzes. Umgekehrt ist ein kleiner Wert für n (wie z. B. 3) schneller auf Verschiebungen in der Verkaufsstufe zu reagieren, aber die Prognose könnte so weit schwanken, dass die Produktion nicht auf die Variationen reagieren kann. Erforderliche Verkaufsgeschichte: n plus die Anzahl der Zeiträume, die für die Auswertung der Prognoseleistung erforderlich sind (Perioden der besten Passform). Diese Tabelle wird in der Prognoseberechnung verwendet: Februar-Prognose entspricht (114 119 137 125) 4 123,75 gerundet auf 124. März-Prognose entspricht (119 137 125 124) 4 126,25 gerundet auf 126. 3.2.5 Methode 5: Lineare Approximation Diese Methode Verwendet die lineare Approximation-Formel, um einen Trend aus der Anzahl der Perioden des Kundenauftragsverlaufs zu berechnen und diesen Trend auf die Prognose zu projizieren. Sie sollten den Trend monatlich neu berechnen, um Veränderungen in den Trends zu erkennen. Diese Methode erfordert die Anzahl der besagten Perioden und die Anzahl der vorgegebenen Perioden des Kundenauftragsverlaufs. Diese Methode ist nützlich, um die Nachfrage nach neuen Produkten oder Produkten mit gleichbleibenden positiven oder negativen Trends zu prognostizieren, die nicht auf saisonale Schwankungen zurückzuführen sind. 3.2.5.1 Beispiel: Methode 5: Lineare Approximation Lineare Approximation berechnet einen Trend, der auf zwei Erfolgsdaten-Datenpunkten basiert. Diese beiden Punkte definieren eine gerade Trendlinie, die in die Zukunft projiziert wird. Verwenden Sie diese Methode mit Vorsicht, da Langstreckenprognosen durch kleine Änderungen an nur zwei Datenpunkten genutzt werden. Prognosevorgaben: n entspricht dem Datenpunkt im Verkaufsverlauf, der mit dem aktuellsten Datenpunkt verglichen wird, um einen Trend zu identifizieren. Geben Sie z. B. n 4 an, um die Differenz zwischen Dezember (aktuellste Daten) und August (vier Perioden vor Dezember) als Grundlage für die Berechnung des Trends zu verwenden. Mindestens erforderliche Verkaufsgeschichte: n plus 1 plus die Anzahl der Zeiträume, die für die Auswertung der Prognoseleistung (Perioden der besten Anpassung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: Januar-Prognose Dezember des vergangenen Jahres 1 (Trend) 137 (1 mal 2) 139. Februar-Prognose Dezember des vergangenen Jahres 1 (Trend), was 137 (2 mal 2) 141 entspricht. März-Prognose Dezember des vergangenen Jahres 1 (Trend), was 137 entspricht (3 mal 2) 143. 3.2.6 Methode 6: Least Squares Regression Die Least Squares Regression (LSR) Methode ergibt eine Gleichung, die eine geradlinige Beziehung zwischen den historischen Verkaufsdaten beschreibt Und der Ablauf der Zeit. LSR passt eine Zeile in den ausgewählten Datenbereich, so dass die Summe der Quadrate der Unterschiede zwischen den tatsächlichen Verkaufsdatenpunkten und der Regressionsgeraden minimiert wird. Die Prognose ist eine Projektion dieser Geraden in die Zukunft. Diese Methode erfordert die Verkaufsdatenhistorie für den Zeitraum, der durch die Anzahl der Perioden am besten angepasst wird, sowie die angegebene Anzahl historischer Datenperioden. Die Mindestanforderung ist zwei historische Datenpunkte. Diese Methode ist nützlich, um die Nachfrage zu prognostizieren, wenn ein linearer Trend in den Daten liegt. 3.2.6.1 Beispiel: Methode 6: Least Squares Regression Lineare Regression oder Least Squares Regression (LSR) ist die beliebteste Methode zur Identifizierung eines linearen Trends in historischen Verkaufsdaten. Die Methode berechnet die Werte für a und b, die in der Formel verwendet werden sollen: Diese Gleichung beschreibt eine Gerade, wobei Y für Verkäufe steht und X die Zeit darstellt. Lineare Regression ist langsam zu erkennen, Wendepunkte und Schritt-Funktions-Verschiebungen in der Nachfrage. Lineare Regression passt zu einer geraden Linie zu den Daten, auch wenn die Daten saisonal oder besser durch eine Kurve beschrieben werden. Wenn die Verkaufsverlaufsdaten einer Kurve folgen oder ein starkes saisonales Muster aufweisen, treten prognostizierte Vorurteile und systematische Fehler auf. Prognosevorgaben: n entspricht den Perioden der Verkaufsgeschichte, die bei der Berechnung der Werte für a und b verwendet werden. Geben Sie z. B. n 4 an, um den Verlauf von September bis Dezember als Grundlage für die Berechnungen zu verwenden. Wenn Daten verfügbar sind, würde gewöhnlich ein größeres n (wie z. B. n 24) verwendet werden. LSR definiert eine Zeile für so wenig wie zwei Datenpunkte. Für dieses Beispiel wurde ein kleiner Wert für n (n 4) gewählt, um die manuellen Berechnungen zu reduzieren, die erforderlich sind, um die Ergebnisse zu verifizieren. Mindestens erforderliche Verkaufsgeschichte: n Perioden plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung (Perioden der besten Passung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: März-Prognose entspricht 119,5 (7 mal 2,3) 135,6 gerundet auf 136. 3.2.7 Methode 7: Zweite Grad-Approximation Um die Prognose zu projizieren, verwendet diese Methode die Formel für die zweite Grad-Approximation, um eine Kurve zu zeichnen Das basiert auf der Anzahl der Perioden der Verkaufsgeschichte. Diese Methode erfordert die Anzahl der Perioden am besten passt plus die Anzahl der Perioden der Kundenauftrag Geschichte mal drei. Diese Methode ist nicht sinnvoll, um die Nachfrage nach einem längerfristigen Zeitraum zu prognostizieren. 3.2.7.1 Beispiel: Methode 7: Zweite Grad Approximation Lineare Regression bestimmt Werte für a und b in der Prognoseformel Y a b X mit dem Ziel, eine Gerade an die Verkaufsverlaufdaten anzupassen. Die zweite Grad-Approximation ist ähnlich, aber diese Methode bestimmt die Werte für a, b und c in dieser Prognoseformel: Y a b X c X 2 Ziel dieser Methode ist es, eine Kurve auf die Verkaufsverlaufsdaten zu setzen. Diese Methode ist nützlich, wenn sich ein Produkt im Übergang zwischen Lebenszyklusstadien befindet. Zum Beispiel, wenn ein neues Produkt von der Einführung in Wachstumsstadien bewegt, könnte sich der Umsatztrend beschleunigen. Wegen des Termes zweiter Ordnung kann sich die Prognose schnell an die Unendlichkeit wenden oder auf Null fallen (je nachdem, ob der Koeffizient c positiv oder negativ ist). Diese Methode ist nur kurzfristig sinnvoll. Prognose Spezifikationen: die Formel finden a, b und c, um eine Kurve auf genau drei Punkte passen. Sie geben n an, die Anzahl der Zeitperioden der Daten, die sich in jedem der drei Punkte ansammeln. In diesem Beispiel n 3. Die tatsächlichen Verkaufsdaten für April bis Juni werden in den ersten Punkt Q1 zusammengefasst. Juli bis September werden zusammen addiert, um Q2 zu schaffen, und Oktober bis Dezember Summe zu Q3. Die Kurve ist an die drei Werte Q1, Q2 und Q3 angepasst. Erforderliche Verkaufsgeschichte: 3 mal n Perioden für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Auswertung der Prognoseleistung (Perioden der besten Anpassung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: Q0 (Jan) (Feb) (Mar) Q1 (Apr) (Mai) (Jun), was 125 122 137 384 Q2 (Jul) (Aug) (Sep) entspricht, was 140 129 entspricht 131 400 Q3 (Okt) (Nov) (Dez), was 114 119 137 370 entspricht Der nächste Schritt beinhaltet die Berechnung der drei Koeffizienten a, b und c, die in der Prognoseformel Y ab X c X 2 verwendet werden sollen. Q1, Q2 und Q3 werden auf der Grafik dargestellt, wobei die Zeit auf der horizontalen Achse aufgetragen ist. Q1 repräsentiert den gesamten historischen Umsatz für April, Mai und Juni und ist auf X 1 Q2 entspricht Juli bis September Q3 entspricht Oktober bis Dezember und Q4 steht für Januar bis März. Diese Grafik veranschaulicht das Plotten von Q1, Q2, Q3 und Q4 für die Näherung des zweiten Grades: Abbildung 3-2 Plotten Q1, Q2, Q3 und Q4 für die zweite Gradnäherung Drei Gleichungen beschreiben die drei Punkte auf dem Graphen: (1) Q1 A cx 2 wobei X 1 (Q1 abc) (2) Q2 a bX cX 2 wobei X 2 (Q2 a 2b 4c) (3) Q3 a bX cX 2 wobei X 3 (Q3 a 3b 9c) die drei Gleichungen gleichzeitig lösen Um die Gleichung 1 (1) aus Gleichung 2 (2) zu subtrahieren und für b zu lösen: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Ersetzen Sie diese Gleichung für B in Gleichung (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3 (Q2 ndash Q1) Schließlich ersetzen diese Gleichungen für a und b in Gleichung (1): (1) Q3 ndash 3 (Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1 c (Q3 ndash Q2) (Q1 ndash Q2) 2 Das zweite Grad Approximation-Verfahren berechnet a, b und c wie folgt: a Q3 ndash 3 (Q2 ndash Q1 ) 370 ndash 3 (400 ndash 384) 370 ndash 3 (16) 322 b (Q2 ndash Q1) ndash3c (400 ndash 384) ndash (3 mal ndash23) 16 69 85 c (Q3 ndash Q2) (Q1 ndash Q2) 2 ( 370 ndash 400) (384 ndash 400) 2 ndash23 Dies ist eine Berechnung der Annäherungsprognose des zweiten Grades: Y a bX cX 2 322 85X (ndash23) (X 2) Wenn X 4, Q4 322 340 ndash 368 294. Die Prognose entspricht 294 3 98 pro Zeitraum. Wenn X 5, Q5 322 425 ndash 575 172. Die Prognose entspricht 172 3 58,33 abgerundet auf 57 pro Periode. Wenn X 6, Q6 322 510 ndash 828 4. Die Prognose entspricht 4 3 1,33 gerundet auf 1 pro Periode. Dies ist die Prognose für das nächste Jahr, letztes Jahr zu diesem Jahr: 3.2.8 Methode 8: Flexible Methode Diese Methode ermöglicht es Ihnen, die bestmögliche Anzahl von Perioden des Kundenauftragsverlaufs auszuwählen, der n Monate vor dem voraussichtlichen Startdatum beginnt Eine prozentuale Erhöhung oder Verringerung des Multiplikationsfaktors anwenden, um die Prognose zu ändern. Diese Methode ähnelt Methode 1, Prozent über letztes Jahr, außer dass Sie die Anzahl der Perioden angeben können, die Sie als Basis verwenden. Abhängig davon, was Sie als n wählen, benötigt diese Methode Perioden, die am besten passen, plus die Anzahl der angegebenen Perioden der Verkaufsdaten. Diese Methode ist nützlich, um die Nachfrage nach einem geplanten Trend zu prognostizieren. 3.2.8.1 Beispiel: Methode 8: Flexible Methode Die Flexible Methode (Prozent über n Monate vorher) ähnelt Methode 1, Prozent über letztes Jahr. Beide Methoden multiplizieren die Verkaufsdaten aus einer früheren Zeitspanne mit einem von Ihnen angegebenen Faktor und projizieren dann das Ergebnis in die Zukunft. In der Percent Over Last Year Methode basiert die Projektion auf Daten aus dem gleichen Zeitraum im Vorjahr. Sie können auch die Flexible Methode verwenden, um einen Zeitraum anzugeben, der nicht der gleiche Zeitraum im letzten Jahr ist, als Grundlage für die Berechnungen zu verwenden. Multiplikationsfaktor Geben Sie z. B. 110 in der Verarbeitungsoption an, um die vorherigen Verkaufsgeschichtsdaten um 10 Prozent zu erhöhen. Basisperiode Zum Beispiel, n 4 bewirkt, dass die erste Prognose auf Umsatzdaten im September des vergangenen Jahres basiert. Mindestens erforderliche Verkaufsgeschichte: Die Anzahl der Perioden zurück zur Basisperiode plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung erforderlich sind (Perioden der besten Anpassung). Diese Tabelle ist Geschichte, die in der Prognoseberechnung verwendet wird: 3.2.9 Methode 9: Gewichteter beweglicher Durchschnitt Die gewichtete bewegliche durchschnittliche Formel ist ähnlich wie Methode 4, Moving Average Formel, weil es im Durchschnitt der vorherigen Monatsverkäufe geschieht, um die nächste Monatsverkaufsgeschichte zu projizieren. Mit dieser Formel können Sie jedoch Gewichte für jede der Vorperioden zuordnen. Diese Methode erfordert die Anzahl der gewählten Perioden plus die Anzahl der Perioden am besten passende Daten. Ähnlich wie Moving Average ist diese Methode hinter den Nachfragetrends zurückgegangen, so dass diese Methode nicht für Produkte mit starken Trends oder Saisonalität empfohlen wird. Diese Methode ist nützlich, um die Nachfrage nach ausgereiften Produkten mit einer Nachfrage zu veranschlagen, die relativ gleich ist. 3.2.9.1 Beispiel: Methode 9: Gewichteter bewegter Durchschnitt Die Methode der gewichteten beweglichen Mittelwerte (WMA) ähnelt Methode 4, Moving Average (MA). Allerdings können Sie bei der Verwendung von WMA ungleiche Gewichte den historischen Daten zuordnen. Die Methode berechnet einen gewichteten Durchschnitt der letzten Verkaufsgeschichte, um kurzfristig eine Projektion zu erreichen. Neuere Daten werden in der Regel ein größeres Gewicht als ältere Daten zugewiesen, so dass WMA eher auf Verschiebungen in der Ebene des Umsatzes reagiert. Allerdings treten prognostizierte Vorurteile und systematische Fehler auf, wenn die Produktverkäufe Geschichte starke Tendenzen oder saisonale Muster aufweist. Diese Methode eignet sich besser für kurzfristige Prognosen von reifen Produkten als für Produkte in den Wachstums - oder Obsoleszenzstadien des Lebenszyklus. Die Anzahl der Perioden der Verkaufsgeschichte (n), die in der Prognoseberechnung verwendet werden soll. Geben Sie z. B. n 4 in der Verarbeitungsoption an, um die letzten vier Perioden als Grundlage für die Projektion in den nächsten Zeitraum zu verwenden. Ein großer Wert für n (z. B. 12) erfordert mehr Verkaufsgeschichte. Ein solcher Wert führt zu einer stabilen Prognose, aber es ist langsam, Verschiebungen im Umsatz zu erkennen. Umgekehrt reagiert ein kleiner Wert für n (wie z. B. 3) schneller auf Verschiebungen im Umsatz, aber die Prognose könnte so weit schwanken, dass die Produktion nicht auf die Variationen reagieren kann. Die Gesamtzahl der Perioden für die Verarbeitungsoption rdquo14 - Perioden zu includerdquo sollte 12 Monate nicht überschreiten. Das Gewicht, das jeder der historischen Datenperioden zugeordnet ist. Die zugewiesene Gewichte müssen 1,00 betragen. Zum Beispiel, wenn n 4, Gewichte von 0,50, 0,25, 0,15 und 0,10 mit den letzten Daten, die das größte Gewicht erhalten. Mindestens erforderliche Verkaufsgeschichte: n plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung (Perioden der besten Passung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: Januar-Prognose entspricht (131 mal 0,10) (114 mal 0,15) (119 mal 0,25) (137 mal 0,50) (0,10 0,15 0,25 0,50) 128,45 gerundet auf 128. Februar-Prognose entspricht (114 mal 0,10) (137 mal 0,25) (137 mal 0,25) (137 mal 0,25) (128 mal 0,50) 1 127,5 gerundet auf 128. März-Vorhersage gleich (119 mal 0,10) (137 mal 0,15) (128 mal 0,25) (128 mal 0,50) 1 128,45 gerundet 128. 3.2.10 Methode 10: Lineare Glättung Diese Methode berechnet einen gewichteten Durchschnitt der vergangenen Verkaufsdaten. Bei der Berechnung verwendet diese Methode die Anzahl der Perioden des Kundenauftragsverlaufs (von 1 bis 12), die in der Verarbeitungsoption angegeben ist. Das System nutzt eine mathematische Progression, um Daten im Bereich vom ersten (geringsten Gewicht) bis zum endgültigen (größten Gewicht) zu wiegen. Dann projiziert das System diese Informationen zu jeder Periode in der Prognose. Diese Methode erfordert für die Anzahl der Perioden, die in der Verarbeitungsoption angegeben sind, die Monate am besten. 3.2.10.1 Beispiel: Methode 10: Lineare Glättung Diese Methode ähnelt Methode 9, WMA. Jedoch wird anstelle der willkürlichen Zuordnung von Gewichten zu den historischen Daten eine Formel verwendet, um Gewichte zuzuordnen, die linear abfallen und auf 1,00 summieren. Die Methode berechnet dann einen gewichteten Durchschnitt der letzten Verkaufsgeschichte, um kurzfristig eine Projektion zu erreichen. Wie alle linearen gleitenden durchschnittlichen Prognosetechniken, Prognose Bias und systematische Fehler auftreten, wenn die Produktverkäufe Geschichte zeigt starke Trend oder saisonale Muster. Diese Methode eignet sich besser für kurzfristige Prognosen von reifen Produkten als für Produkte in den Wachstums - oder Obsoleszenzstadien des Lebenszyklus. N entspricht der Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoseberechnung verwendet werden soll. Beispielsweise ist n gleich 4 in der Verarbeitungsoption, um die letzten vier Perioden als Grundlage für die Projektion in den nächsten Zeitraum zu verwenden. Das System ordnet die Gewichte automatisch den historischen Daten zu, die linear abfallen und auf 1,00 summieren. Wenn z. B. n gleich 4 ist, weist das System Gewichte von 0,4, 0,3, 0,2 und 0,1 zu, wobei die letzten Daten das größte Gewicht erhalten. Mindestens erforderliche Verkaufsgeschichte: n plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung (Perioden der besten Passung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: 3.2.11 Methode 11: Exponentielle Glättung Diese Methode berechnet einen geglätteten Durchschnitt, der zu einer Schätzung wird, die das allgemeine Umsatzniveau über die ausgewählten historischen Datenperioden darstellt. Diese Methode erfordert die Verkaufsdatenhistorie für den Zeitraum, der durch die Anzahl der Perioden am besten angepasst wird, sowie die Anzahl der angegebenen historischen Datenperioden. Die Mindestanforderung ist zwei historische Datenperioden. Diese Methode ist nützlich, um die Nachfrage zu prognostizieren, wenn kein linearer Trend in den Daten liegt. 3.2.11.1 Beispiel: Methode 11: Exponentielle Glättung Diese Methode ähnelt Methode 10, Lineare Glättung. Bei der linearen Glättung weist das System Gewichte auf, die linear den historischen Daten abweichen. In der exponentiellen Glättung weist das System Gewichte auf, die exponentiell abklingen. Die Gleichung für die Exponential-Glättungsvorhersage lautet: Prognose-Alpha (vorherige Ist-Verkäufe) (1 ndashalpha) (vorherige Prognose) Die Prognose ist ein gewichteter Durchschnitt des tatsächlichen Umsatzes aus der Vorperiode und der Prognose aus der Vorperiode. Alpha ist das Gewicht, das auf den tatsächlichen Umsatz für die vorherige Periode angewendet wird. (1 ndash alpha) ist das Gewicht, das auf die Prognose für die vorherige Periode angewendet wird. Werte für Alpha-Bereich von 0 bis 1 und fallen normalerweise zwischen 0,1 und 0,4. Die Summe der Gewichte beträgt 1,00 (alpha (1 ndash alpha) 1). Sie sollten einen Wert für die Glättungskonstante, alpha, zuweisen. Wenn Sie keinen Wert für die Glättungskonstante zuordnen, berechnet das System einen angenommenen Wert, der auf der Anzahl der Perioden des Verkaufsverlaufs basiert, die in der Verarbeitungsoption angegeben ist. Alpha entspricht der Glättungskonstante, die verwendet wird, um den geglätteten Durchschnitt für das allgemeine Niveau oder die Größe des Umsatzes zu berechnen. Werte für Alpha-Bereich von 0 bis 1. n entspricht dem Bereich der Verkaufsverlaufdaten, die in die Berechnungen enthalten sind. Im Allgemeinen reicht ein Jahr der Verkaufsgeschichte Daten aus, um das allgemeine Umsatzniveau abzuschätzen. Für dieses Beispiel wurde ein kleiner Wert für n (n 4) gewählt, um die manuellen Berechnungen zu reduzieren, die erforderlich sind, um die Ergebnisse zu verifizieren. Exponentielle Glättung kann eine Prognose erzeugen, die auf so wenig wie einem historischen Datenpunkt basiert. Mindestens erforderliche Verkaufsgeschichte: n plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseleistung (Perioden der besten Passung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: 3.2.12 Methode 12: Exponentielle Glättung mit Trend und Saisonalität Diese Methode berechnet einen Trend, einen saisonalen Index und einen exponentiell geglätteten Durchschnitt aus dem Kundenauftragsverlauf. Das System wendet dann eine Projektion des Trends auf die Prognose an und passt sich dem Saisonindex an. Diese Methode erfordert die Anzahl der Perioden am besten fit plus zwei Jahre der Verkaufsdaten, und ist nützlich für Elemente, die sowohl Trend und Saisonalität in der Prognose haben. Sie können den Alpha - und Beta-Faktor eingeben oder das System berechnen. Alpha - und Beta-Faktoren sind die Glättungskonstante, die das System verwendet, um den geglätteten Durchschnitt für das allgemeine Niveau oder die Größe des Umsatzes (Alpha) und die Trendkomponente der Prognose (Beta) zu berechnen. 3.2.12.1 Beispiel: Methode 12: Exponentielle Glättung mit Trend und Saisonalität Diese Methode ähnelt Methode 11, Exponential-Glättung, indem ein geglätteter Durchschnitt berechnet wird. Allerdings enthält das Verfahren 12 auch einen Begriff in der Prognosegleichung, um einen geglätteten Trend zu berechnen. Die Prognose besteht aus einem geglätteten Durchschnitt, der für einen linearen Trend angepasst ist. Wenn in der Verarbeitungsoption angegeben, wird die Prognose auch für Saisonalität angepasst. Alpha entspricht der Glättungskonstante, die bei der Berechnung des geglätteten Durchschnitts für das allgemeine Niveau oder die Größe des Umsatzes verwendet wird. Werte für Alpha-Bereich von 0 bis 1. Beta entspricht der Glättungskonstante, die bei der Berechnung des geglätteten Durchschnitts für die Trendkomponente der Prognose verwendet wird. Werte für Beta reichen von 0 bis 1. Ob ein saisonaler Index auf die Prognose angewendet wird. Alpha und Beta sind unabhängig voneinander. Sie müssen nicht auf 1,0 summieren. Mindestens erforderliche Verkaufsgeschichte: Ein Jahr plus die Anzahl der Zeiträume, die erforderlich sind, um die Prognoseleistung zu bewerten (Perioden der besten Passform). Wenn zwei oder mehr Jahre historische Daten vorliegen, verwendet das System zwei Jahre Daten in den Berechnungen. Methode 12 verwendet zwei exponentielle Glättungsgleichungen und einen einfachen Durchschnitt, um einen geglätteten Durchschnitt, einen geglätteten Trend und einen einfachen durchschnittlichen saisonalen Index zu berechnen. Ein exponentiell geglätteter Durchschnitt: Ein exponentiell geglätteter Trend: Ein einfacher durchschnittlicher saisonaler Index: Abbildung 3-3 Einfacher durchschnittlicher Saisonindex Die Prognose wird dann unter Verwendung der Ergebnisse der drei Gleichungen berechnet: L ist die Länge der Saisonalität (L entspricht 12 Monaten oder 52 Wochen). T ist die aktuelle Zeitspanne. M ist die Anzahl der Zeiträume in die Zukunft der Prognose. S ist der multiplikative saisonale Anpassungsfaktor, der auf den entsprechenden Zeitraum indiziert ist. Diese Tabelle enthält die in der Prognoseberechnung verwendete Geschichte: Dieser Abschnitt bietet einen Überblick über die Prognoseauswertungen und erörtert: Sie können Prognosemethoden auswählen, um bis zu 12 Prognosen für jedes Produkt zu generieren. Jede Prognosemethode könnte eine etwas andere Projektion erzeugen. Wenn Tausende von Produkten prognostiziert werden, ist eine subjektive Entscheidung unpraktisch, welche Prognose in den Plänen für jedes Produkt zu verwenden ist. Das System wertet automatisch die Leistung für jede Prognosemethode aus, die Sie auswählen und für jedes Produkt, das Sie prognostizieren. Sie können zwischen zwei Leistungskriterien wählen: MAD und POA. MAD ist ein Maß für Prognosefehler. POA ist ein Maß für die Prognose-Bias. Beide dieser Leistungsbewertungstechniken erfordern für einen von Ihnen angegebenen Zeitraum die tatsächlichen Verkaufsgeschichte. Die Zeit der letzten Geschichte, die für die Auswertung verwendet wird, wird als Haltezeit oder Periode der besten Passung bezeichnet. To measure the performance of a forecasting method, the system: Uses the forecast formulas to simulate a forecast for the historical holdout period. Makes a comparison between the actual sales data and the simulated forecast for the holdout period. When you select multiple forecast methods, this same process occurs for each method. Multiple forecasts are calculated for the holdout period and compared to the known sales history for that same period. The forecasting method that produces the best match (best fit) between the forecast and the actual sales during the holdout period is recommended for use in the plans. This recommendation is specific to each product and might change each time that you generate a forecast. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD is the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, a simple mathematical relationship exists between MAD and two other common measures of distribution, which are standard deviation and Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way.

No comments:

Post a Comment