In der Praxis wird der gleitende Durchschnitt eine gute Schätzung des Mittelwerts der Zeitreihen liefern, wenn der Mittelwert konstant oder langsam verändert wird. Im Falle eines konstanten Mittels wird der größte Wert von m die besten Schätzungen des zugrunde liegenden Mittels geben. Eine längere Beobachtungsperiode wird die Effekte der Variabilität ausgleichen. Der Zweck der Bereitstellung eines kleineren m ist es, die Prognose auf eine Änderung des zugrunde liegenden Prozesses zu reagieren. Zur Veranschaulichung schlagen wir einen Datensatz vor, der Änderungen des zugrunde liegenden Mittels der Zeitreihen beinhaltet. Die Figur zeigt die Zeitreihen, die für die Illustration verwendet wurden, zusammen mit der mittleren Nachfrage, aus der die Serie erzeugt wurde. Der Mittelwert beginnt als Konstante bei 10. Beginnend um die Zeit 21 erhöht er sich in jeder Periode um eine Einheit, bis er zum Zeitpunkt 30 den Wert von 20 erreicht. Dann wird er wieder konstant. Die Daten werden durch Addition des Mittelwertes, eines zufälligen Rauschens aus einer Normalverteilung mit Nullmittelwert und Standardabweichung simuliert. 3. Die Ergebnisse der Simulation werden auf die nächste ganze Zahl gerundet. Die Tabelle zeigt die simulierten Beobachtungen für das Beispiel. Wenn wir den Tisch benutzen, müssen wir uns daran erinnern, dass zu irgendeiner Zeit nur die bisherigen Daten bekannt sind. Die Schätzungen des Modellparameters, für drei verschiedene Werte von m werden zusammen mit dem Mittelwert der Zeitreihen in der folgenden Abbildung dargestellt. Die Figur zeigt die gleitende durchschnittliche Schätzung des Mittelwertes zu jeder Zeit und nicht die Prognose. Die Prognosen würden die gleitenden Durchschnittskurven nach Perioden nach rechts verschieben. Aus der Figur ergibt sich sofort eine Schlussfolgerung. Für alle drei Schätzungen liegt der gleitende Durchschnitt hinter dem linearen Trend zurück, wobei die Verzögerung mit m zunimmt. Die Verzögerung ist der Abstand zwischen dem Modell und der Schätzung in der Zeitdimension. Wegen der Verzögerung unterschätzt der gleitende Durchschnitt die Beobachtungen, wenn der Mittelwert zunimmt. Die Vorspannung des Schätzers ist die Differenz zu einer bestimmten Zeit im Mittelwert des Modells und der durch den gleitenden Durchschnitt vorhergesagte Mittelwert. Die Vorspannung, wenn der Mittelwert zunimmt, ist negativ. Für ein abnehmendes Mittel ist die Vorspannung positiv. Die Verzögerung in der Zeit und die Vorspannung, die in der Schätzung eingeführt werden, sind Funktionen von m. Je größer der Wert von m. Je größer die Größe der Verzögerung und der Vorspannung ist. Für eine stetig wachsende Serie mit Trend a. Die Werte der Verzögerung und der Vorspannung des Schätzers des Mittels sind in den nachstehenden Gleichungen angegeben. Die Beispielkurven stimmen nicht mit diesen Gleichungen überein, weil das Beispielmodell nicht kontinuierlich zunimmt, sondern es beginnt als Konstante, ändert sich zu einem Trend und wird dann wieder konstant. Auch die Beispielkurven sind vom Lärm betroffen. Die gleitende durchschnittliche Prognose der Perioden in die Zukunft wird durch die Verschiebung der Kurven nach rechts dargestellt. Die Verzögerung und die Bias steigen proportional an. Die nachfolgenden Gleichungen zeigen die Verzögerung und die Vorspannung einer Prognoseperiode in die Zukunft im Vergleich zu den Modellparametern. Wiederum sind diese Formeln für eine Zeitreihe mit einem konstanten linearen Trend. Wir sollten uns über dieses Ergebnis nicht wundern. Der gleitende durchschnittliche Schätzer beruht auf der Annahme eines konstanten Mittels, und das Beispiel hat einen linearen Trend im Mittel während eines Teils des Untersuchungszeitraums. Da Echtzeit-Serien den Annahmen eines Modells nur selten gehorchen, sollten wir auf solche Ergebnisse vorbereitet sein. Wir können auch aus der Figur schließen, dass die Variabilität des Rauschens die größte Wirkung für kleinere m hat. Die Schätzung ist viel volatiler für den gleitenden Durchschnitt von 5 als der gleitende Durchschnitt von 20. Wir haben die widersprüchlichen Wünsche, m zu erhöhen, um den Effekt der Variabilität aufgrund des Rauschens zu reduzieren und m zu reduzieren, um die Prognose besser auf Veränderungen zu reagieren Im gemein Der Fehler ist die Differenz zwischen den tatsächlichen Daten und dem prognostizierten Wert. Ist die Zeitreihe wirklich ein konstanter Wert, so ist der erwartete Wert des Fehlers Null und die Varianz des Fehlers besteht aus einem Begriff, der eine Funktion und ein zweiter Term ist, der die Varianz des Rauschens ist. Der erste Term ist die Varianz des Mittelwertes, der mit einer Stichprobe von m Beobachtungen geschätzt wird, vorausgesetzt, die Daten stammen aus einer Population mit einem konstanten Mittelwert. Dieser Begriff wird minimiert, indem man m so groß wie möglich macht. Eine große m macht die Prognose nicht mehr auf eine Veränderung der zugrunde liegenden Zeitreihen. Um die Prognose auf Veränderungen zu reagieren, wollen wir m so klein wie möglich (1), aber das erhöht die Fehlerabweichung. Die praktische Vorhersage erfordert einen Zwischenwert. Vorhersage mit Excel Das Prognose-Add-In implementiert die gleitenden durchschnittlichen Formeln. Das folgende Beispiel zeigt die Analyse, die durch das Add-In für die Beispieldaten in Spalte B bereitgestellt wird. Die ersten 10 Beobachtungen sind indiziert -9 bis 0. Im Vergleich zur obigen Tabelle werden die Periodenindizes um -10 verschoben. Die ersten zehn Beobachtungen liefern die Startwerte für die Schätzung und werden verwendet, um den gleitenden Durchschnitt für die Periode 0 zu berechnen. Die MA (10) - Spalte (C) zeigt die berechneten Bewegungsdurchschnitte. Der gleitende Mittelwert m befindet sich in der Zelle C3. Die Fore (1) Spalte (D) zeigt eine Prognose für einen Zeitraum in die Zukunft. Das Prognoseintervall befindet sich in Zelle D3. Wenn das Prognoseintervall auf eine größere Zahl geändert wird, werden die Zahlen in der Spalte Fore nach unten verschoben. Die Err (1) Spalte (E) zeigt den Unterschied zwischen Beobachtung und Prognose. Zum Beispiel ist die Beobachtung zum Zeitpunkt 1 gleich 6. Der prognostizierte Wert aus dem gleitenden Durchschnitt zum Zeitpunkt 0 beträgt 11,1. Der Fehler ist dann -5.1. Die Standardabweichung und die mittlere mittlere Abweichung (MAD) werden in den Zellen E6 bzw. E7 berechnet. Gewichtsbewegungsvorhersagemethoden: Vor - und Nachteile Hallo, LIEBE deine Post. Frage mich, ob du weiter rechnen könntest. Wir verwenden SAP. In ihm gibt es eine Auswahl, die du wählen kannst, bevor du deine Prognose namens Initialisierung ausführt. Wenn Sie diese Option überprüfen, erhalten Sie ein Prognoseergebnis, wenn Sie im selben Zeitraum die Prognose ausführen und die Initialisierung nicht bestätigen. Ich kann nicht herausfinden, was die Initialisierung macht. Ich meine, mathmatisch. Welches Prognoseergebnis ist am besten zu speichern und zu verwenden. Die Änderungen zwischen den beiden sind nicht in der prognostizierten Menge, sondern in der MAD und Error, Sicherheitsbestand und ROP-Mengen. Nicht sicher, ob Sie SAP verwenden. Hallo danke für die so genaue Weise zu gn. Danke Jaspreet Hinterlasse eine Antwort Antworten abbrechen Über Shmula Pete Abilla ist der Gründer von Shmula und der Charakter, Kanban Cody. Er hat Unternehmen wie Amazon, Zappos, eBay, Backcountry geholfen und andere reduzieren Kosten und verbessern die Kundenerfahrung. Er tut dies durch eine systematische Methode zur Erkennung von Schmerzpunkten, die den Kunden und das Geschäft beeinflussen, und ermutigt eine breite Beteiligung der Firmenpartner, ihre eigenen Prozesse zu verbessern. Diese Website ist eine Sammlung seiner Erfahrungen, die er mit Ihnen teilen möchte. Erste Schritte mit kostenlosen Downloads Berechnen Sie eine Prognose der oben genannten Nachfrage mit einem 3- und 5-Periode gleitenden Durchschnitt. Berechnen Sie eine Prognose der oben genannten Nachfrage mit einem 3- und 5-Periode gleitenden Durchschnitt. Tagesnachfrage 1 200 2 134 3 157 4 165 5 177 6 125 7 146 8 150 9 182 10 197 11 136 Entwickeln Sie eine Tabellenkalkulation, um die folgenden Fragen zu beantworten. 12 163 Berechnen Sie eine Prognose der oben genannten Nachfrage mit einem 3- und 5-Periode gleitenden Durchschnitt. 13 157 Zeichnen Sie diese Prognosen und die Originaldaten mit Excel. Was zeigt die Grafik 14 169 Welche der oben genannten Prognosen ist am besten Warum Berechnen Sie eine Prognose der oben genannten Nachfrage mit einem 3- und 5-Periode gleitenden Durchschnitt. Fordern Sie eine neue Arbeit unten an. Post navigation Leave a Review Klicken Sie hier, um die Antwort abzubrechen. Aktiv vor 1 Woche, 2 Tage aktiv vor 1 Monat aktiv vor 2 Monaten aktiv vor 2 Monaten, 1 Woche aktiv vor 2 Monaten, 2 Wochen aktiv vor 2 Monaten, 3 Wochen aktiv vor 2 Monaten, 3 Wochen aktiv vor 2 Monaten, 3 Wochen Aktiv vor 2 Monaten, 3 Wochen aktiv vor 2 Monaten, 3 Wochen aktiv vor 2 Monaten, 3 Wochen aktiv vor 2 Monaten, 3 Wochen Aktuelle Beiträge Testimonial Ich liebe dieses soziale Forum für akademische Schriftsteller, ich kann teilen und mit meinem Mitmenschen in Die tutoring-industrie, studieren sie sich auch für akademische unterstützung, dank viel kimwood schriftsteller homeworkmarket Disclaimer socialfreelancer ist eine soziale stelle für akademische schriftstellerfreiberufler, miete, teilen und posten von akademischen lösungen und studienressourcen ist sehr garantiert. Wir bieten auch vorgeschriebene Lösungen in unserem Shop. Wir sind stark gegen jede Form der akademischen Unehrlichkeit. Dies ist die Art und Weise, wie Sie sollen Lösungen zur Verfügung gestellt werden 1.As eine Referenz für ein tiefes Verständnis des Themas 2.As eine Quelle von Ideen Argumentation für Ihre eigene Forschung (wenn richtig referenziert Zeugnis soziale Freiberufler half mir Treffen Studenten, die treue Kunden waren , Ich fordere für die Arbeit von Kunden hier. i auch interagieren mit mit meinen Kollegen zu wissen, was passiert rund um Statistik prof geschriebener
No comments:
Post a Comment